OSPI Curriculum and Instruction home pageEmail us for technical or content questionsSubmit ideas for GLE resources or additions to the web site.Lists of Instructional Support Documents, Classroom-Based Assessment Documents, and WASL released items (if available)Web Based resources including demonstration videos and informational links to outside web resources, etc.WASL stems and released items.Complete glossary available hereGLE Search, Span, and Grade Specific Reports
Science, 2009
  Grade: 9-12
  Select a content and you will automatically be redirected to the list of content standards.  
EALR 1: Systems.  Big Idea: Systems (SYS).  Core Content:  Predictability and Feedback
  • In prior grades students learned how to simplify and analyze complex situations by thinking about them as systems. In grades 9-12 students learn to construct more sophisticated system models, including the concept of feedback. Students are expected to determine whether or not systems analysis will be helpful in a given situation and if so, to describe the system, including subsystems, boundaries, flows, and feedbacks. The next step is to use the system as a dynamic model to predict changes. Students are also expected to recognize that even the most sophisticated models may not accurately predict how the real world functions. This deep understanding of systems and ability to use systems analysis is an essential tool both for scientific inquiry and for technological design.
EALR 2: Inquiry.  Big Idea: Inquiry (INQ).  Core Content:  Conducting Analyses and Thinking Logically
  • In prior grades students learned to revise questions so they can be answered scientifically. In grades 9-12 students extend and refine their understanding of the nature of inquiry and their ability to formulate questions, propose hypotheses, and design, conduct, and report on investigations. Refinement includes an increased understanding of the kinds of questions that scientists ask and how the results reflect the research methods and the criteria that scientific arguments are judged by. Increased abilities include competence in using mathematics, a closer connection between student-planned investigations and existing knowledge, improvements in communication and collaboration, and participation in a community of learners.
EALR 3: Application.  Big Idea: Application (APP).  Core Content:  Science, Technology, and Society
  • In prior grades students learn to work with other members of a team to apply the full process of technological design and relevant science concepts to solve problems. In grades 9-12 students apply what they have learned to address societal issues and cultural differences. Students learn that science and technology are interdependent, that science and technology influence society, and that society influences science and technology. Students continue to increase their abilities to work with other students and to use mathematics and information technologies (when available) to solve problems. They transfer insights from those increased abilities when considering local, regional, and global issues. These insights and capabilities will help prepare students to solve societal and personal problems in future years.
EALR 4: Physical Science.  Big Idea: Force and Motion (PS1).  Core Content:  Newton's Laws
  • In prior grades students learned to measure, record, and calculate the average speed of objects, and to tabulate and graph the results. In grades 9-11 students learn to apply Newton's Laws of Motion and Gravity both conceptually and quantitatively. Students are able to calculate average speed, velocity, and acceleration. Students also develop an understanding of forces due to gravitational and electrical attraction. These fundamental concepts enable students to understand the forces that govern the observable world and provide a foundation for a full course in physics.
EALR 4: Physical Science.  Big Idea: Matter: Properties and Change (PS2).  Core Content:  Chemical Reactions
  • In prior years, students learned the basic concepts behind the atomic nature of matter. In grades 9-11 students learn about chemical reactions, starting with the structure of an atom. They learn that the Periodic Table groups elements with similar physical and chemical properties. With grounding in atomic structure, students learn about the formation of molecules and ions, compounds and solutions, and the details of a few common chemical reactions. They also learn about nuclear reactions and the distinction between fusion and fission. These concepts about the fundamental properties of matter will help students understand chemical and nuclear reactions that are important in modern society and lay the groundwork for both chemistry and life science.
EALR 4: Physical Science.  Big Idea: Energy: Transfer, Transformation, and Conservation (PS3).  Core Content:  Transformation and Conservation of Energy
  • In prior grades students learned to apply the concept of "energy" in various settings. In grades 9-11 students learn fundamental concepts of energy, including the Law of Conservation of Energy—that the total amount of energy in a closed system is constant. Other key concepts include gravitational potential and kinetic energy, how waves transfer energy, the nature of sound, and the electromagnetic spectrum. Energy concepts are essential for understanding all of the domains of science (EALR 4), from the ways that organisms get energy from their environment, to the energy that drives weather systems and volcanoes.
EALR 4: Earth and Space Science.  Big Idea: Earth in Space (ES1).  Core Content:  Evolution of the Universe
  • In prior grades students learned about other objects in the Solar System and how they are held together by a force called "gravity." In grades 9-11 students learn the current scientific theory about the origin of the universe and subsequent formation of our Solar System. These discoveries are based on the important concept that the physical principles that apply today on Earth apply everywhere in the universe, now and in the distant past. These fundamental concepts help students make coherent sense of the universe and engage in further wondering and learning.
EALR 4: Earth and Space Science.  Big Idea: Earth Systems, Structures, and Processes (ES2).  Core Content:  Energy in Earth Systems
  • In prior grades students learned about planet Earth as an interacting system of solids, liquids, and gases, and about the water cycle, the rock cycle, and the movement of crustal plates. In grades 9-11 students learn how the uneven heating of Earth's surface causes differences in climate in different parts of the world, and how the tilt of Earth's axis with respect to the plane of its orbit around the Sun causes seasonal variations. Students also learn about the essential biogeochemical cycles that continuously move elements such as carbon and nitrogen through Earth systems. These major ideas about energy inputs and outputs in and around the Earth help students understand Earth as a dynamic system.
EALR 4: Earth and Space Science.  Big Idea: Earth History (ES3).  Core Content:  Evolution of the Earth
  • In prior grades students learned about a few of the methods that have made it possible to uncover the history of our planet. In grades 9-11 students learn about the major changes in Earth systems over geologic time and some of the methods used to gather evidence of those changes. Methods include observation and measurement of sediment layers, using cores drilled from the sea bottom and from ancient glaciers, and the use of radioactive isotopes. Findings of Earth history include the existence of life as early as 3.5 billion years ago and major changes in the composition of Earth's atmosphere.
EALR 4: Life Science.  Big Idea: Structures and Functions of Living Organisms (LS1).  Core Content:  Processes Within Cells
  • In prior grades students learned that all living systems are composed of cells which make up tissues, organs, and organ systems. In grades 9-11 students learn that cells have complex molecules and structures that enable them to carry out life functions such as photosynthesis and respiration and pass on their characteristics to future generations. Information for producing proteins and reproduction is coded in DNA and organized into genes in chromosomes. This elegant yet complex set of processes explains how life forms replicate themselves with slight changes that make adaptations to changing conditions possible over long periods of time. These processes that occur within living cells help students understand the commonalities among the diverse living forms that populate Earth today.
EALR 4: Life Science.  Big Idea: Ecosystems (LS2).  Core Content:  Maintenance and Stability of Populations
  • In prior grades students learned to apply key concepts about ecosystems to understand the interactions among organisms and the nonliving environment. In grades 9-11 students learn about the factors that foster or limit growth of populations within ecosystems and that help to maintain the health of the ecosystem overall. Organisms participate in the cycles of matter and flow of energy to survive and reproduce. Given abundant resources, populations can increase at rapid rates. But living and nonliving factors limit growth, resulting in ecosystems that can remain stable for long periods of time. Understanding the factors that affect populations is important for many societal issues, from decisions about protecting endangered species to questions about how to meet the resource needs of civilization while maintaining the health and sustainability of Earth's ecosystems.
EALR 4: Life Science.  Big Idea: Biological Evolution (LS3).  Core Content:  Mechanisms of Evolution
  • In prior grades students learned how the traits of organisms are passed on through the transfer of genetic information during reproduction. In grades 9-11 students learn about the factors that underlie biological evolution: variability of offspring, population growth, a finite supply of resources, and natural selection. Both the fossil record and analyses of DNA have made it possible to better understand the causes of variability and to determine how the many species alive today are related. Evolution is the major framework that explains the amazing diversity of life on our planet and guides the work of the life sciences.